Can digital ICT foster political mobilization and advance political freedom? (The Economist 2007, Diamond 2012)
Motivation

Can digital ICT foster political mobilization and advance political freedom? (The Economist 2007, Diamond 2012)

- Spread information, foster communication and coordination
Can digital ICT foster political mobilization and advance political freedom? (The Economist 2007, Diamond 2012)

- Spread information, foster communication and coordination
- Ability to reach large audiences, decentralized, open-access
Mobile phones: forefront of the political battleground
Motivation

- Mobile phones: forefront of the political battleground

Activists (Mozambique 2010)

Government (Ukraine 2014)
Africa

Reasons for grievance and high rates of political exclusion

Continent with fastest adoption of mobile phone technology (2012: 700 million users)

Unique, novel and detailed geo-referenced micro-data 1998-2012 for all of Africa

Licensed data on mobile phone coverage 2G/3G/4G

Big data on protests (GDELT)

Additional small data sets on protests (ACLED, SCAD)

Auxiliary geographical, economic and social data at 55 X 55 km level
Contribution

- Africa

 Theater of some of most spectacular episodes of political mobilization
Africa

1. Theater of some of most spectacular episodes of political mobilization
2. Reasons for grievance and high rates of political exclusion
Africa

1. Theater of some of most spectacular episodes of political mobilization
2. Reasons for grievance and high rates of political exclusion
3. Continent with fastest adoption of mobile phone technology (2012: 700 million users)
Africa

1. Theater of some of most spectacular episodes of political mobilization
2. Reasons for grievance and high rates of political exclusion
3. Continent with fastest adoption of mobile phone technology (2012: 700 million users)

Unique, novel and detailed geo-referenced micro-data 1998-2012 for all of Africa
Contribution

- Africa

 1. Theater of some of most spectacular episodes of political mobilization
 2. Reasons for grievance and high rates of political exclusion
 3. Continent with fastest adoption of mobile phone technology (2012: 700 million users)

- Unique, novel and detailed geo-referenced micro-data 1998-2012 for all of Africa

 1. Licensed data on mobile phone coverage 2G/3G/4G
Africa

1. Theater of some of most spectacular episodes of political mobilization
2. Reasons for grievance and high rates of political exclusion
3. Continent with fastest adoption of mobile phone technology (2012: 700 million users)

Unique, novel and detailed geo-referenced micro-data 1998-2012 for all of Africa

1. Licensed data on mobile phone coverage 2G/3G/4G
2. Big data on protests (GDELT)
Contribution

- Africa

1. Theater of some of most spectacular episodes of political mobilization
2. Reasons for grievance and high rates of political exclusion
3. Continent with fastest adoption of mobile phone technology (2012: 700 million users)

- Unique, novel and detailed geo-referenced micro-data 1998-2012 for all of Africa

1. Licensed data on mobile phone coverage 2G/3G/4G
2. Big data on protests (GDELT)
3. Additional small data sets on protests (ACLED, SCAD)
Contribution

- Africa
 1. Theater of some of most spectacular episodes of political mobilization
 2. Reasons for grievance and high rates of political exclusion
 3. Continent with fastest adoption of mobile phone technology (2012: 700 million users)

- Unique, novel and detailed geo-referenced micro-data 1998-2012 for all of Africa
 1. Licensed data on mobile phone coverage 2G/3G/4G
 2. Big data on protests (GDELT)
 3. Additional small data sets on protests (ACLED, SCAD)
 4. Auxiliary geographical, economic and social data at 55 X 55 km level
Contribution

- Exploit spread of mobile phones across small areas within countries
Contribution

- Exploit spread of mobile phones across small areas within countries
- Investigate how country-level economic shocks affect incidence of protests as a function of local mobile phone coverage:
Contribution

- Exploit spread of mobile phones across small areas within countries
- Investigate how country-level economic shocks affect incidence of protests as a function of local mobile phone coverage:

Next steps/limitations
- Agnostic on welfare consequences
Contribution

- Exploit spread of mobile phones across small areas within countries
- Investigate how country-level economic shocks affect incidence of protests as a function of local mobile phone coverage:

Next steps/limitations

- Agnostic on welfare consequences
- Reporting effect?
Contribution

- Exploit spread of mobile phones across small areas within countries
- Investigate how country-level economic shocks affect incidence of protests as a function of local mobile phone coverage:

Next steps/limitations

- Agnostic on welfare consequences
- Reporting effect?
- Mechanisms
Media

- Information provision fosters civic political participation (Gerber et al. 2009, Gentzkow et al. 2011)

- Political disaffection (Bauernschuster et al., 2014, Gentzkow 2006, Olken 2009)

- Economic and social empowerment (Acker 2010, Acker and Mbiti 2010)
Media

- Information provision fosters civic political participation (Gerber et al. 2009, Gentzkow et al. 2011)
Media

- Information provision fosters civic political participation (Gerber et al. 2009, Gentzkow et al. 2011)

Media

- Information provision fosters civic political participation (Gerber et al. 2009, Gentzkow et al. 2011)
- Political disaffection (Bauernschuster et al., 2014, Gentzkow 2006, Olken 2009)
Media

- Information provision fosters civic political participation (Gerber et al. 2009, Gentzkow et al. 2011)
- Political disaffection (Bauernschuster et al., 2014, Gentzkow 2006, Olken 2009)
Media

- Information provision fosters civic political participation (Gerber et al. 2009, Gentzkow et al. 2011)
- Political disaffection (Bauernschuster et al., 2014, Gentzkow 2006, Olken 2009)
- Economic and social empowerment (Acker 2010, Acker and Mbiti 2010)
Economic conditions
Economic conditions

- Poor economic conditions associated to great mobilization (Campante and Chor 2012, 2014, DiPasquale and Glaeser 1998)
Economic conditions

- Poor economic conditions associated to great mobilization (Campante and Chor 2012, 2014, DiPasquale and Glaeser 1998)

Insurgency, conflict and mobile phones (Pierskalla and Hollenbach 2013, Shapiro and Weidmann 2012)
10,650, cells of 55 × 55 km at the equator (3,025 sq. km) (Tollefsen et al. 2012).
10,650, cells of 55 x 55 km at the equator (3,025 sq. km) (Tollefsen et al. 2012).

Large array of cross-sectional socio-economic and other characteristics, incl. population.
10,650, cells of 55 x 55 km at the equator (3,025 sq. km) (Tollefsen et al. 2012).

Large array of cross-sectional socio-economic and other characteristics, incl. population.

Pop.= 84,300 individuals (100 to 5,000,000)
Data: Grid cells

- 10,650, cells of 55 x 55 km at the equator (3,025 sq. km) (Tollefsen et al. 2012).

- Large array of cross-sectional socio-economic and other characteristics, incl. population.

- Pop. = 84,300 individuals (100 to 5,000,000)

- Assign cells spanning over multiple countries to country occupying greatest area
Data: Grid cells

- 10,650, cells of 55×55 km at the equator (3,025 sq. km) (Tollefsen et al. 2012).
- Large array of cross-sectional socio-economic and other characteristics, incl. population.
- Pop. = 84,300 individuals (100 to 5,000,000)
- Assign cells spanning over multiple countries to country occupying greatest area
- Analysis run on cell X year
Data: Mobile Phone Coverage

- Licensed data on mobile phone signal coverage (GSMA)
Data: Mobile Phone Coverage

- Licensed data on mobile phone signal coverage (GSMA)
- GSM standard: 96% of African market share
Data: Mobile Phone Coverage

- Licensed data on mobile phone signal coverage (GSMA)
- GSM standard: 96% of African market share
- Geo-referenced: 1 to 23 km on the ground
Data: Mobile Phone Coverage

- Licensed data on mobile phone signal coverage (GSMA)
- GSM standard: 96% of African market share
- Geo-referenced: 1 to 23 km on the ground
- Yearly coverage, 1998-2012 (excl. Somalia)
Data: Mobile Phone Coverage

- Licensed data on mobile phone signal coverage (GSMA)
- GSM standard: 96% of African market share
- Geo-referenced: 1 to 23 km on the ground
- Yearly coverage, 1998-2012 (excl. Somalia)
- 2G/3G/4G

Manacorda & Tesei (2015) Liberation technology March 2015
Licensed data on mobile phone signal coverage (GSMA)

GSM standard: 96% of African market share

Geo-referenced: 1 to 23 km on the ground

Yearly coverage, 1998-2012 (excl. Somalia)

2G/3G/4G

10 p.p. increase in population coverage: 3.7 p.p. increase in take-up (ITU)
Data: Mobile Phone Coverage

- Licensed data on mobile phone signal coverage (GSMA)
- GSM standard: 96% of African market share
- Geo-referenced: 1 to 23 km on the ground
- Yearly coverage, 1998-2012 (excl. Somalia)
- 2G/3G/4G

- 10 p.p. increase in population coverage: 3.7 p.p. increase in take-up (ITU)

- Link cell and protest data at level of cell assuming population uniformly distributed within cells
2G Diffusion, 1998-2012

1998
Spread of mobile phone technology across the continent (% pop. in reach of signal)
Data: Political mobilization

- Global Database on Events, Location and Tone (GDELT 1.0, Leetaru and Schrodt 2013)
Data: Political mobilization

- Global Database on Events, Location and Tone (GDELT 1.0, Leetaru and Schrodt 2013)

- Big Data on political events and actions: 300 million daily observations 1979-2013
Data: Political mobilization

- Global Database on Events, Location and Tone (GDELT 1.0, Leetaru and Schrodt 2013)

- Big Data on political events and actions: 300 million daily observations 1979-2013

 - The Guardian

- Machine-coded from digital(ized) newswires

 - Example of automated coding
Data: Political mobilization

- Global Database on Events, Location and Tone (GDELT 1.0, Leetaru and Schrodt 2013)

- Big Data on political events and actions: 300 million daily observations 1979-2013

 - The Guardian

- Machine-coded from digital(ized) newswires

 - Example of automated coding

Coding system: Conflict and Mediation Event Observatory (CAMEO)
Data: Political mobilization

- Coding system: Conflict and Mediation Event Observatory (CAMEO)
- Verbal/material conflict/mediation events (no routine democratic processes, e.g. elections, legislative debate..)
Data: Political mobilization

- Coding system: Conflict and Mediation Event Observatory (CAMEO)

- Verbal/material conflict/mediation events (no routine democratic processes, e.g. elections, legislative debate..)

- 20 primary event categories (e.g. Make public statement, Consult, Threaten, Protest, Disapprove, etc..)

Focus on Protests ("civilian demonstrations and other collective actions carried out as a sign of protest against a target")

Precise day (atomistic)

Events de-duplicated

Automated geo-referencing: cities/landmarks from GeoNames Gazetteer

Non-geo-referenced events assigned to country centroid (28%) - excluded

No info on issue or number of participants and limited information on actors

Manacorda & Tesei (2015)
Data: Political mobilization

- Coding system: Conflict and Mediation Event Observatory (CAMEO)

- Verbal/material conflict/mediation events (no routine democratic processes, e.g. elections, legislative debate..)

- 20 primary event categories (e.g. Make public statement, Consult, Threaten, Protest, Disapprove, etc..)

- Focus on Protests ("civilian demonstrations and other collective actions carried out as a sign of protest against a target")
Data: Political mobilization

- Coding system: Conflict and Mediation Event Observatory (CAMEO)
- Verbal/material conflict/mediation events (no routine democratic processes, e.g. elections, legislative debate..)
- 20 primary event categories (e.g. Make public statement, Consult, Threaten, Protest, Disapprove, etc..)
- Focus on Protests ("civilian demonstrations and other collective actions carried out as a sign of protest against a target")
- Precise day (atomistic)
Coding system: Conflict and Mediation Event Observatory (CAMEO)

Verbal/material conflict/mediation events (no routine democratic processes, e.g. elections, legislative debate..)

20 primary event categories (e.g. Make public statement, Consult, Threaten, Protest, Disapprove, etc..)

Focus on Protests ("civilian demonstrations and other collective actions carried out as a sign of protest against a target")

Precise day (atomistic)

Events de-duplicated
Data: Political mobilization

- Coding system: Conflict and Mediation Event Observatory (CAMEO)

- Verbal/material conflict/mediation events (no routine democratic processes, e.g. elections, legislative debate..)

- 20 primary event categories (e.g. Make public statement, Consult, Threaten, Protest, Disapprove, etc..)

- Focus on Protests ("civilian demonstrations and other collective actions carried out as a sign of protest against a target")

- Precise day (atomistic)

- Events de-duplicated

- Automated geo-referencing: cities/landmarks from GeoNames Gazetteer
Data: Political mobilization

- Coding system: Conflict and Mediation Event Observatory (CAMEO)
- Verbal/material conflict/mediation events (no routine democratic processes, e.g. elections, legislative debate..)
- 20 primary event categories (e.g. Make public statement, Consult, Threaten, Protest, Disapprove, etc..)
- Focus on Protests ("civilian demonstrations and other collective actions carried out as a sign of protest against a target")
- Precise day (atomistic)
- Events de-duplicated
- Automated geo-referencing: cities/landmarks from GeoNames Gazetteer
- Non-geo-referenced events assigned to country centroid (28%) - excluded
Data: Political mobilization

- Coding system: Conflict and Mediation Event Observatory (CAMEO)

- Verbal/material conflict/mediation events (no routine democratic processes, e.g. elections, legislative debate..)

- 20 primary event categories (e.g. Make public statement, Consult, Threaten, Protest, Disapprove, etc..)

- Focus on Protests ("civilian demonstrations and other collective actions carried out as a sign of protest against a target")

- Precise day (atomistic)

- Events de-duplicated

- Automated geo-referencing: cities/landmarks from GeoNames Gazetteer

- Non-geo-referenced events assigned to country centroid (28%) - excluded

- No info on issue or number of participants and limited information on actors
Cairo, 2011

al-Qāhirah, 2011
Data: political mobilization

- Measurement error
Data: political mobilization

- Measurement error
 - Coverage increases exponentially over time
Data: political mobilization

- Measurement error
 - Coverage increases exponentially over time
 - High % of false positives

* Armed Conflict Location and Event Dataset (ACLED 2.0, Raleigh, Linke and Dowd 2012)
 - Manually compiled from local, regional, national and continental media plus NGO reports
* CCAPS Social Conflict in Africa Database (SCAD 3.0, Salehyan and Hendrix 2012)
 - Specialized geo-referenced data set on protests in Africa compiled from Agence France Press and Associated Press
Data: political mobilization

- Measurement error
 - Coverage increases exponentially over time
 - High % of false positives
 - Restrict to one (sub-)event per day per location

★ Armed Conflict Location and Event Dataset (ACLED 2.0, Raleigh, Linke and Dowd 2012)
★ Manually compiled from local, regional, national and continental media plus NGO reports
★ CCAPS Social Conflict in Africa Database (SCAD 3.0, Salehyan and Hendrix 2012)
★ Specialized geo-referenced data set on protests in Africa compiled from Agence France Press and Associated Press

Manacorda & Tesei (2015) Liberation technology March 2015 16 / 47
Data: political mobilization

- Measurement error
 - Coverage increases exponentially over time
 - High % of false positives
 - Restrict to one (sub-)event per day per location
 - Validate with auxiliary data sets

Manacorda & Tesei (2015)

Liberation technology

March 2015 16 / 47
Data: political mobilization

- Measurement error
 - Coverage increases exponentially over time
 - High % of false positives
 - Restrict to one (sub-)event per day per location
 - Validate with auxiliary data sets
 - Armed Conflict Location and Event Dataset (ACLED 2.0, Raleigh, Linke and Dowd 2012)
Data: political mobilization

- Measurement error
 - Coverage increases exponentially over time
 - High % of false positives
 - Restrict to one (sub-)event per day per location
 - Validate with auxiliary data sets
 - Armed Conflict Location and Event Dataset (ACLED 2.0, Raleigh, Linke and Dowd 2012)
 - Manually compiled from local, regional, national and continental media plus NGO reports
 - CCAPS Social Conflict in Africa Database (SCAD 3.0, Salehyan and Hendrix 2012)
 - Specialized geo-referenced data set on protests in Africa compiled from Agence France Press and Associated Press

Manacorda & Tesei (2015) Liberation technology March 2015 16 / 47
Data: political mobilization

- Measurement error
 - Coverage increases exponentially over time
 - High % of false positives
 - Restrict to one (sub-)event per day per location
 - Validate with auxiliary data sets
 - Armed Conflict Location and Event Dataset (ACLED 2.0, Raleigh, Linke and Dowd 2012)
 - Manually compiled from local, regional, national and continental media plus NGO reports
 - CCAPS Social Conflict in Africa Database (SCAD 3.0, Salehyan and Hendrix 2012)
Data: political mobilization

- Measurement error
 - Coverage increases exponentially over time
 - High % of false positives
 - Restrict to one (sub-) event per day per location
 - Validate with auxiliary data sets
 - Armed Conflict Location and Event Dataset (ACLED 2.0, Raleigh, Linke and Dowd 2012)
 - Manually compiled from local, regional, national and continental media plus NGO reports
 - CCAPS Social Conflict in Africa Database (SCAD 3.0, Salehyan and Hendrix 2012)
 - Specialized geo-referenced data set on protests in Africa compiled from Agence France Press and Associated Press
Descriptive Statistics. Protests - micro data

<table>
<thead>
<tr>
<th></th>
<th>Number obs.</th>
<th>Fraction</th>
<th>Number of sources</th>
<th>Number of Articles</th>
<th>Number of days</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDELT (1998-2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrations</td>
<td>48,871</td>
<td>62.31</td>
<td>4.12</td>
<td>21.06</td>
<td>1.50</td>
</tr>
<tr>
<td>Riots</td>
<td>12,961</td>
<td>16.53</td>
<td>3.79</td>
<td>19.28</td>
<td>1.29</td>
</tr>
<tr>
<td>Strikes</td>
<td>6,731</td>
<td>8.58</td>
<td>2.41</td>
<td>11.83</td>
<td>1.21</td>
</tr>
<tr>
<td>Others</td>
<td>9,869</td>
<td>12.58</td>
<td>4.19</td>
<td>21.77</td>
<td>1.35</td>
</tr>
<tr>
<td>Total</td>
<td>78,432</td>
<td>100</td>
<td>3.92</td>
<td>20.06</td>
<td>1.41</td>
</tr>
<tr>
<td>ACLED (1998-2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9,152</td>
<td>100</td>
<td></td>
<td></td>
<td>1.21</td>
</tr>
<tr>
<td>SCAD (1998-2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrations</td>
<td>5,621</td>
<td>25.31</td>
<td></td>
<td></td>
<td>2.64</td>
</tr>
<tr>
<td>Riots</td>
<td>16,585</td>
<td>74.69</td>
<td></td>
<td></td>
<td>3.11</td>
</tr>
<tr>
<td>Total</td>
<td>22,206</td>
<td>100</td>
<td></td>
<td></td>
<td>2.84</td>
</tr>
</tbody>
</table>
Descriptive Statistics. Main variables - cell level

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (1000s)</td>
<td>84.32</td>
<td>266.78</td>
<td>0</td>
<td>12,860</td>
</tr>
<tr>
<td>Mobile Phone 2G Coverage (%)</td>
<td>0.43</td>
<td>0.42</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mobile Phone 3G Coverage (%)</td>
<td>0.02</td>
<td>0.09</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Protests per 100,000 pop. – GDELT</td>
<td>0.58</td>
<td>6.56</td>
<td>0</td>
<td>10,000</td>
</tr>
<tr>
<td>Protests per 100,000 pop. – ACELD</td>
<td>0.07</td>
<td>0.642</td>
<td>0</td>
<td>1,146.13</td>
</tr>
<tr>
<td>Protests per 100,000 pop. – SCAD</td>
<td>0.17</td>
<td>4.76</td>
<td>0</td>
<td>10,166.5</td>
</tr>
</tbody>
</table>
Protests per capita - GDELT (logs, net of country and time effects)
Protests per capita - GDELT, ACLED, SCAD (logs, net of country and time effects)

Correlation GDELT/ACLED/SCAD

Manacorda & Tesei (2015)
Protests per capita and mobile phone coverage across countries

Manacorda & Tesei (2015)
Protests per capita - GDELT vs ACLED - within country variation

Correlation GDELT/ACLED

Coeff: 1.870565533638 ; Robust SE: .0074356370605528 ; t= 251.567626953125

Manacorda & Tesei (2015)
Protests per capita - GDELT vs SCAD - within country variation

Correlation GDELT/SCAD

Coefficient: 0.8585557341575623; Robust SE: 0.0051747374236584; t = 165.9129028320313

Manacorda & Tesei (2015) Liberation technology March 2015 23 / 47
Descriptive Statistics. Main variables by cells

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Capita Income (USD 2005)</td>
<td>2,299.0</td>
<td>2,707.2</td>
<td>208.7</td>
<td>15,300.6</td>
</tr>
<tr>
<td>Border Distance (100 km)</td>
<td>1.73</td>
<td>1.47</td>
<td>0</td>
<td>10.54</td>
</tr>
<tr>
<td>Capital Distance (100 km)</td>
<td>3.57</td>
<td>3.35</td>
<td>0.04</td>
<td>19.48</td>
</tr>
<tr>
<td>Travel Time nearest city pop. ≥ 20K (hours)</td>
<td>4.42</td>
<td>3.77</td>
<td>0.16</td>
<td>106.9</td>
</tr>
<tr>
<td>Travel Time nearest city pop. ≥ 50K (hours)</td>
<td>4.21</td>
<td>3.69</td>
<td>0</td>
<td>102.2</td>
</tr>
<tr>
<td>Coast (dummy)</td>
<td>0.15</td>
<td>0.36</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Primary Roads (100 km)</td>
<td>0.87</td>
<td>0.99</td>
<td>0</td>
<td>5.22</td>
</tr>
<tr>
<td>Primary Roads Paved (100 km)</td>
<td>0.49</td>
<td>0.72</td>
<td>0</td>
<td>4.66</td>
</tr>
<tr>
<td>Primary Roads Good Conditions (100 km)</td>
<td>0.26</td>
<td>0.49</td>
<td>0</td>
<td>3.80</td>
</tr>
<tr>
<td>Secondary Roads (100 km)</td>
<td>1.42</td>
<td>1.10</td>
<td>0</td>
<td>6.40</td>
</tr>
<tr>
<td>Electricity Network (100 km)</td>
<td>0.86</td>
<td>1.18</td>
<td>0</td>
<td>7.55</td>
</tr>
<tr>
<td>Infant Mortality Rate (1,000)</td>
<td>8.91</td>
<td>3.71</td>
<td>1</td>
<td>20.31</td>
</tr>
<tr>
<td>Mountain (%)</td>
<td>0.23</td>
<td>0.32</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Forest (%)</td>
<td>0.23</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Irrigated (%)</td>
<td>0.08</td>
<td>0.17</td>
<td>0</td>
<td>0.87</td>
</tr>
<tr>
<td>Diamonds (dummy)</td>
<td>0.03</td>
<td>0.18</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Minerals (dummy)</td>
<td>0.22</td>
<td>0.42</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Oil (dummy)</td>
<td>0.13</td>
<td>0.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Temperature (Celsius degrees)</td>
<td>23.12</td>
<td>4.25</td>
<td>4.06</td>
<td>31.41</td>
</tr>
<tr>
<td>Precipitation (mm.)</td>
<td>876.2</td>
<td>487.5</td>
<td>69.39</td>
<td>3,296.4</td>
</tr>
<tr>
<td>Drought (n. of years)</td>
<td>1.44</td>
<td>1.25</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Distance from drought (100 km)</td>
<td>1.74</td>
<td>0.56</td>
<td>0</td>
<td>4.56</td>
</tr>
<tr>
<td>Flashrate (per Km² per year)</td>
<td>17.32</td>
<td>13.80</td>
<td>0</td>
<td>163.1</td>
</tr>
<tr>
<td>Country GDP growth (%)</td>
<td>0.049</td>
<td>0.041</td>
<td>-0.33</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Lower opportunity cost and greater grievances during recessions

Manacorda & Tesei (2015)
Specification and identification

- Cell-level regressions:

\[Y_{gct} = \beta_0 + \beta_1 \text{Cov}_{gct} + \beta_2 \text{Cov}_{gct} \times \Delta \ln GDP_{ct} + d_{gc} + d_{ct} + X'_{gc} \beta_{ct} + \epsilon_{gct} \]

- \(g \): Cell
- \(c \): Country
- \(t \): Time

- \(Y_{gct} \): \(\log(\text{protests/pop}+1) \)
- \(\text{Cov}_{gct} \): Fraction cell area with mobile phone coverage
- \(\Delta \ln GDP_{ct} \): country-level growth rate in GDP
- \(d_{gc} \): cell FE
- \(d_{ct} \): country X time FE
- \(X_{gc} \): baseline covariates (restrict \(\beta_{ct} = \beta_c t \))
 specification and identification

- cell-level regressions:

\[Y_{gct} = \beta_0 + \beta_1 Cov_{gct} + \beta_2 Cov_{gct} \times \Delta \ln GDP_{ct} + d_{gc} + d_{ct} + X'_{gc} \beta_{ct} + \epsilon_{gct} \]

- \(g \): Cell
- \(c \): Country
- \(t \): Time

- \(Y_{gct} \): log(protests/pop+1)
- \(Cov_{gct} \): Fraction cell area with mobile phone coverage
- \(\Delta \ln GDP_{ct} \): country-level growth rate in GDP
- \(d_{gc} \): cell FE
- \(d_{ct} \): country X time FE
- \(X_{gc} \): baseline covariates (restrict \(\beta_{ct} = \beta_c t \))

- Diff-in-diff within countries (pooled)
- Weighted by cell population
- SE clustered by cell/region/country
Table 1. Baseline Regressions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>0.019</td>
<td>0.105***</td>
<td>0.001</td>
<td>0.089***</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.024)</td>
<td>(0.016)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>Coverage * ΔlnGDP</td>
<td>-1.649***</td>
<td></td>
<td>-1.712***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.339)</td>
<td></td>
<td>(0.342)</td>
<td></td>
</tr>
<tr>
<td>Cell characteristics</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>155,194</td>
<td>155,194</td>
<td>155,194</td>
<td>155,194</td>
</tr>
</tbody>
</table>

Dependent variable is the log (protests per 100,000 population + 1). All specifications are weighted by cell population and include Cell FE, as well as Country*Year FE. Columns (3) and (4) interact a country-specific linear trend with the baseline cell-specific characteristics. These include: Average cell population over the period in classes of 50,000 population; Border distance; Capital distance; Travel time to nearest large city (20K, 50K population); Primary Roads (total; paved; good conditions); Secondary Roads; Electricity network; Infant mortality rate; Share of land: mountain, forest, irrigated; Oil fields; Diamond fields; Mines; Average temperature and precipitation; Years of drought; distance from the closest cell undergoing drought. Standard errors in parenthesis are Huber robust and clustered at the cell level. * Significantly different from zero at the 90% level, ** 95% level, *** 99% level.
Table 1B. Baseline Regressions (ACLED and SCAD)

<table>
<thead>
<tr>
<th></th>
<th>Log Protest per 100,000 pop. (ACLED)</th>
<th></th>
<th></th>
<th></th>
<th>Log Protest per 100,000 pop. (SCAD)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Coverage</td>
<td>0.009</td>
<td>0.030**</td>
<td>-0.001</td>
<td>0.019</td>
<td>0.014</td>
<td>0.041*</td>
<td>0.025</td>
<td>0.052**</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.013)</td>
<td>(0.006)</td>
<td>(0.014)</td>
<td>(0.015)</td>
<td>(0.021)</td>
<td>(0.017)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Coverage * ΔlnGDP</td>
<td>-0.408*</td>
<td>-0.385*</td>
<td></td>
<td>-0.513*</td>
<td>-0.513*</td>
<td></td>
<td>-0.513*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.222)</td>
<td>(0.226)</td>
<td></td>
<td>(0.272)</td>
<td>(0.276)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell characteristics</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>155,194</td>
<td>155,194</td>
<td>155,194</td>
<td>155,194</td>
<td>144,857</td>
<td>144,857</td>
<td>144,857</td>
<td>144,857</td>
</tr>
</tbody>
</table>
5 p.p. fall in GDP growth associated to increase in yearly protest/days per capita differential between areas with and without coverage of 8%
5 p.p. fall in GDP growth associated to increase in yearly protest/days per capita differential between areas with and without coverage of 8%

Similar effects with and without large set of controls
5 p.p. fall in GDP growth associated to increase in yearly protest/days per capita differential between areas with and without coverage of 8%

Similar effects with and without large set of controls

Similar effects in GDELT, ACLED and SCAD
Table 3. Additional Regressions

<table>
<thead>
<tr>
<th></th>
<th>Exclude capital (1)</th>
<th>Below/Above 0 (2)</th>
<th>3G (3)</th>
<th>2G and 3G (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>0.051** (0.023)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.091*** (0.024)</td>
<td></td>
</tr>
<tr>
<td>Coverage * ΔlnGDP</td>
<td>-0.941*** (0.314)</td>
<td></td>
<td></td>
<td>-1.732*** (0.338)</td>
</tr>
<tr>
<td>Coverage 3G</td>
<td></td>
<td>0.493*** (0.190)</td>
<td>0.497*** (0.188)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coverage 3G * ΔlnGDP</td>
<td></td>
<td>-0.092 (0.257)</td>
<td>-0.065 (0.240)</td>
<td></td>
</tr>
<tr>
<td>Coverage * ΔlnGDP ≤ 0</td>
<td></td>
<td>-2.190*** (0.651)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coverage * ΔlnGDP ≥ 0</td>
<td></td>
<td>-0.814*** (0.245)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coverage * I(ΔlnGDP ≥ 0)</td>
<td></td>
<td>-0.001*** (0.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>154,504</td>
<td>155,194</td>
<td>155,194</td>
<td>155,194</td>
</tr>
</tbody>
</table>

See footnote Table 1
Stronger in - but not driven by - capital cities
Magnitude of effects

- Stronger in - but not driven by - capital cities
Magnitude of effects

- Stronger in - but not driven by - capital cities
- Asymmetric effect: largely associated to recessions
Magnitude of effects

- Stronger in - but not driven by - capital cities
- Asymmetric effect: largely associated to recessions
- Effect of 3G at low levels of growth but interaction not significant
Estimates by country

Manacorda & Tesei (2015)

Liberation technology

March 2015

Page 32
Country Covariates

Economic Characteristics

<table>
<thead>
<tr>
<th>Source</th>
<th>Coverage Years</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>lnGDP</td>
<td>World Bank 1998-2012</td>
<td>6.470</td>
<td>0.988</td>
</tr>
<tr>
<td>Gini Index</td>
<td>World Bank Different years (max 5)</td>
<td>42.27</td>
<td>7.82</td>
</tr>
</tbody>
</table>

Education Characteristics

<table>
<thead>
<tr>
<th>Source</th>
<th>Coverage Years</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literacy Rate</td>
<td>World Bank 2000, 2005, 2010</td>
<td>59.92</td>
<td>16.81</td>
</tr>
</tbody>
</table>

Business Characteristics

<table>
<thead>
<tr>
<th>Source</th>
<th>Coverage Years</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days start business</td>
<td>World Bank Different years (max 3)</td>
<td>22.97</td>
<td>15.02</td>
</tr>
<tr>
<td>Ease business</td>
<td>World Bank 2012</td>
<td>143</td>
<td>39.58</td>
</tr>
</tbody>
</table>

Institutional Characteristics

<table>
<thead>
<tr>
<th>Source</th>
<th>Coverage Years</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polity2</td>
<td>Polity IV (Marshall and Gurr) 1998-2012</td>
<td>1.063</td>
<td>4.244</td>
</tr>
</tbody>
</table>
Table 2. Country Covariates

<table>
<thead>
<tr>
<th></th>
<th>Economy (1)</th>
<th>Education (2)</th>
<th>Business (3)</th>
<th>Institutions (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gini Index</td>
<td>-0.045</td>
<td>-0.109</td>
<td>-0.070</td>
<td>-0.214*</td>
</tr>
<tr>
<td></td>
<td>(0.103)</td>
<td>(0.101)</td>
<td>(0.095)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>lnGDP</td>
<td>0.320</td>
<td>0.441</td>
<td>0.434</td>
<td>0.534</td>
</tr>
<tr>
<td></td>
<td>(0.243)</td>
<td>(0.315)</td>
<td>(0.353)</td>
<td>(0.331)</td>
</tr>
<tr>
<td>Literacy Rate</td>
<td>-0.019</td>
<td>-0.043</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.034)</td>
<td>(0.038)</td>
<td></td>
</tr>
<tr>
<td>Secondary Education</td>
<td>0.028</td>
<td>0.002</td>
<td>-0.023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.054)</td>
<td>(0.051)</td>
<td></td>
</tr>
<tr>
<td>Tertiary Education</td>
<td>-0.356***</td>
<td>-0.426***</td>
<td>-0.476***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td>(0.098)</td>
<td>(0.093)</td>
<td></td>
</tr>
<tr>
<td>Days start business</td>
<td>-0.128**</td>
<td></td>
<td>-0.213***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td></td>
<td>(0.059)</td>
<td></td>
</tr>
<tr>
<td>Ease business</td>
<td>-0.009</td>
<td>0.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polity2</td>
<td></td>
<td></td>
<td></td>
<td>0.183*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.102)</td>
</tr>
<tr>
<td>Polity2 sq.</td>
<td></td>
<td></td>
<td></td>
<td>0.072*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.035)</td>
</tr>
<tr>
<td>Observations</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Dependent variable: estimated coefficient of $Coverage \times \Delta lnGDP$. Regressions weighted by the inverse of square of standard error.
Responsiveness to mobile phone coverage is higher in:

- Countries with greater fraction of highly educated individuals: a 1 s.d. rise in fraction of pop. with tertiary education (3.45) increases the interaction coefficient by 1.5, roughly a doubling of the effect.
- Countries with more red tape: a 1 s.d. in the number of days to open an activity (15) increases the interaction coefficient by 3, roughly two times the effect.
- In weak autocratic countries (u-shaped, min at Polity2 score -1.3), a 1 s.d. increase (fall) in polity score (4.24) from pure autocracies (democracies) roughly doubles the effect.
Responsiveness to mobile phone coverage is higher in:

- Countries with greater fraction of highly educated individuals: a 1 s.d. rise in fraction of pop. with tertiary education (3.45) increases the interaction coefficient by 1.5, roughly a doubling of the effect.
Responsiveness to mobile phone coverage is higher in:

- Countries with greater fraction of highly educated individuals: a 1 s.d. rise in fraction of pop. with tertiary education (3.45) increases the interaction coefficient by 1.5, roughly a doubling of the effect.

- Countries with more red tape: a 1 s.d. in the number of days to open an activity (15) increases the interaction coefficient by 3, roughly two times the effect.
Responsiveness to mobile phone coverage is higher in:

- Countries with greater fraction of highly educated individuals: a 1 s.d. rise in fraction of pop. with tertiary education (3.45) increases the interaction coefficient by 1.5, roughly a doubling of the effect

- Countries with more red tape: a 1 s.d. in the number of days to open an activity (15) increases the interaction coefficient by 3, roughly two times the effect

- In weak autocratic countries (u-shaped, min at Polity2 score -1.3), a 1 s.d. increase (fall) in polity score (4.24) from pure autocracies (democracies) roughly doubles the effect
Coverage possibly endogenous
Coverage possibly endogenous

Demand and supply determinants of coverage in Sub-Saharan Africa (Acker and Mbiti 2012, Buys et al 2009:

- Population
- Income
- Competition
- Electricity grid
- Installation and maintenance costs: accessibility (elevation, slope, distance from main road, distance from the nearest large city)

Likely not excludable

Coverage possibly endogenous

Demand and supply determinants of coverage in Sub-Saharan Africa (Acker and Mbiti 2012, Buys et al 2009:

- Population
- Income
- Competition
- Electricity grid
- Installation and maintenance costs: accessibility (elevation, slope, distance from main road, distance from the nearest large city)

Likely not excludable
Instrumentation

- Coverage possibly endogenous

- Demand and supply determinants of coverage in Sub-Saharan Africa (Acker and Mbiti 2012, Buys et al 2009):
 - Population
 - Income
 - Competition
 - Electricity grid
 - Installation and maintenance costs: accessibility (elevation, slope, distance from main road, distance from the nearest large city)

- Likely not excludable

Flash density in Africa

Manacorda & Tesei (2015)
Instrumentation

- Instrument Cov_{gct} by Z_{gct}

$$Z_{gct} = F_{gc} \times Cov_{ct}$$

- $F_{gc} =$ average cell flash density
- $Cov_{ct} =$ continent-wide trend in coverage
Instrumentation

- Instrument Cov_{gc_t} by Z_{gc_t}

$$Z_{gc_t} = F_{gc} \times Cov_{ct}$$

- F_{gc} = average cell flash density
- Cov_{ct} = continent-wide trend in coverage

$$Cov_{gc_t} = \delta_0 + \delta_1 Z_{gc_t} + \delta_2 Z_{gc_t} \times \Delta \ln GDP_{ct} + d_{gc} + d_{ct} + X'_{gc} \delta_{ct} + e_{gc_t}$$
Instrumentation

- Instrument Cov_{gct} by Z_{gct}

\[Z_{gct} = F_{gc} \times Cov_{ct} \]

- F_{gc} = average cell flash density
- Cov_t = continent-wide trend in coverage

\[Cov_{gct} = \delta_0 + \delta_1 Z_{gct} + \delta_2 Z_{gct} \times \Delta \ln GDP_{ct} + d_{gc} + d_{ct} + X'_{gc} \delta_{ct} + e_{gct} \]

\[Cov_{gct} \times \Delta \ln GDP_{ct} = \gamma_0 + \gamma_1 Z_{gct} + \gamma_2 Z_{gct} \times \Delta \ln GDP_{ct} + d_{gc} + d_{ct} + X'_{gc} \gamma_{ct} + v_{gct} \]
<table>
<thead>
<tr>
<th></th>
<th>Cov(_{gct})</th>
<th>Cov(_{gct})</th>
<th>Cov({gct}) ∗ ΔlnGDP({ct})</th>
<th>Cov(_{gct})</th>
<th>Cov(_{gct})</th>
<th>Cov({gct}) ∗ ΔlnGDP({ct})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Flashrate</td>
<td>-0.002</td>
<td>-0.002</td>
<td>0.000*</td>
<td>-0.004**</td>
<td>-0.005***</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Flashrate ∗ ΔlnGDP</td>
<td>0.006</td>
<td>-0.005**</td>
<td>0.012</td>
<td>-0.006**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.002)</td>
<td>(0.008)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell characteristics</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F-statistic</td>
<td>1.31</td>
<td>1.25</td>
<td>3.08</td>
<td>4.54</td>
<td>4.45</td>
<td>3.90</td>
</tr>
<tr>
<td>Observations</td>
<td>159,194</td>
<td>159,194</td>
<td>159,194</td>
<td>159,194</td>
<td>159,194</td>
<td>159,194</td>
</tr>
</tbody>
</table>

Dependent variable is 2G/3G percentage coverage in the cell. The explanatory variable is the average cell flash density interacted by the continent-wide trend in coverage. All specifications include Cell FE, as well as Country*Year FE. Columns (4)-(6) interact a country-specific linear trend with the baseline cell-specific characteristics. These include: Average cell population over the period in classes of 50,000 population; Border distance; Capital distance; Travel time to nearest large city (20K, 50K population); Primary Roads (total; paved; good conditions); Secondary Roads; Electricity network; Infant mortality rate; Share of land: mountain, forest, irrigated; Oil fields; Diamond fields; Mines; Average temperature and precipitation; Years of drought; distance from the closest cell undergoing drought. Standard errors in parenthesis are Huber robust and clustered at the cell level. * Significantly different from zero at the 90% level, ** 95% level, *** 99% level.
Magnitude of effects

- Predicts a differential expansion of coverage in cells 1 s.d. of flash rates (13.79) apart of 5.5 p.p. over entire period
Table 5. Instrumental Variable Regressions

<table>
<thead>
<tr>
<th></th>
<th>GDELT</th>
<th>ACLED</th>
<th>SCAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Coverage</td>
<td>-0.441</td>
<td>0.215</td>
<td>-0.272</td>
</tr>
<tr>
<td></td>
<td>(0.431)</td>
<td>(0.380)</td>
<td>(0.227)</td>
</tr>
<tr>
<td>Coverage \times ΔlnGDP</td>
<td>-7.480***</td>
<td>-3.106**</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>(2.819)</td>
<td>(1.593)</td>
<td>(2.207)</td>
</tr>
<tr>
<td>A-R p-value</td>
<td>[0.01]</td>
<td>[0.05]</td>
<td>[0.94]</td>
</tr>
<tr>
<td>Cell characteristics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>155,194</td>
<td>155,194</td>
<td>144,857</td>
</tr>
</tbody>
</table>

Dependent variable is the log (protests per 100,000 population + 1). The endogenous variable Coverage is instrumented by $F_{gc} \times Cov_t$, where F_{gc} is the average cell flash density and Cov_t is the continent-wide trend in coverage. In square brackets are reported the p-values based on the Anderson-Rubin test of statistical significance. A key property of the test is that it is robust to weak instruments. The version of the test we implement is robust to heteroskedasticity and arbitrary within-cell correlation of the residuals (Andrews and Stock, 2005). All specifications include Cell FE and Country*Year FE. All columns interact a country-specific linear trend with the baseline cell-specific characteristics. These include: Border distance; Capital distance; Travel time to nearest large city (20K, 50K, 100K, 500K); Primary Roads (total; paved; good conditions); Secondary Roads; Infant mortality rate; Share of land: mountain, forest, irrigated; Oil fields; Diamond fields; Mines; Ethno-linguistic fragmentation. Standard errors in parenthesis are Huber robust and clustered at the cell level. * Significantly different from zero at the 90% level, ** 95% level, *** 99% level.
Magnitude of effects

- IV estimates roughly 5 times OLS

Seems to suggest coverage negatively associated to protests, possibly due to measurement error.
Magnitude of effects

- IV estimates roughly 5 times OLS
- Seems to suggest coverage negatively associated to protests, possibly due to omitted variables
Magnitude of effects

- IV estimates roughly 5 times OLS
- Seems to suggest coverage negatively associated to protests, possibly due to omitted variables
- Measurement error
We use unique data on protest and mobile phone coverage to show previously undocumented causal effect of mobile phone technology on political mobilization.

In line with economic theory, we find a negative relation between economic growth and the level of protest.

Political mobilization magnified by mobile phone availability.

If anything OLS underestimated.

Strong support for mobile activism argument.

Ongoing work:
- Channels: information, coordination? Returns to participation? Empowerment? Increasing reporting?
- Validate instrument: placebo tests.
Table 3B. Additional Regressions (ACLED and SCAD)

<table>
<thead>
<tr>
<th></th>
<th>Log Protest per 100,000 (ACLED)</th>
<th>Log Protest per 100,000 (SCAD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exclude capital</td>
<td>Below/Above 0</td>
</tr>
<tr>
<td>Coverage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Coverage * ΔlnGDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.209*</td>
<td>-0.391*</td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>(0.220)</td>
</tr>
<tr>
<td>Coverage 3G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Coverage 3G * ΔlnGDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.500***</td>
<td>-0.494***</td>
</tr>
<tr>
<td></td>
<td>(0.162)</td>
<td>(0.158)</td>
</tr>
<tr>
<td>Coverage * ΔlnGDP</td>
<td><0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.485</td>
<td>-0.494***</td>
</tr>
<tr>
<td></td>
<td>(0.657)</td>
<td>(0.158)</td>
</tr>
<tr>
<td>Coverage * ΔlnGDP</td>
<td>≥0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.175*</td>
<td>-0.919</td>
</tr>
<tr>
<td></td>
<td>(0.103)</td>
<td>(0.927)</td>
</tr>
<tr>
<td>Coverage * I(ΔlnGDP ≥ 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000***</td>
<td>-0.919</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.927)</td>
</tr>
<tr>
<td>Cell characteristics</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>154,504</td>
<td>155,194</td>
</tr>
</tbody>
</table>

See footnote Table 1
GDELT: a big data history of life, the universe and everything

The Global Data on Events, Location and Tone promises to be the ultimate big database - and an amazing tool for data journalists. But what is it?

• Download the data
• More data journalism and data visualisations from the Guardian

Everybody is searching for bigger and bigger data: how about this? A comprehensive list of every event in human history.

It matters because historians have long feared that we live in a digital dark ages - where our history will have vanished when future generations try to look back on these electronic decades.
BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- **First event:**
Example of Automated Coding (from Schrodt, 2013)

BAGHDAD. Iraqi leaders *criticized* Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- **First event:**
 - Event Code: 111 (DEMAND: Criticize or denounce)
Example of Automated Coding (from Schrodt, 2013)

BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- **First event:**
 - Event Code: 111 (DEMAND: Criticize or denounce)
 - Source: IRQ
 - Target: TUR

- **Second event:**
 - Event Code: 195 (ASSAULT: Conduct suicide, car, or other non-military bombing)
 - Source: TUR
 - Target: IRQKRD

Manacorda & Tesei (2015)
BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- **First event:**
 - Event Code: 111 (DEMAND: Criticize or denounce)
 - Source: IRQ GOV
BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- **First event:**

 Event Code: 111 (DEMAND: Criticize or denounce)

 Source: IRQ GOV

 Target: TUR
BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- First event:
 Event Code: 111 (DEMAND: Criticize or denounce)
 Source: IRQ GOV
 Target: TUR
BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- **First event:**
 - Event Code: 111 (DEMAND: Criticize or denounce)
 - Source: IRQ GOV
 - Target: TUR

- **Second event:**
BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- **First event:**
 - Event Code: 111 (DEMAND: Criticize or denounce)
 - Source: IRQ GOV
 - Target: TUR

- **Second event:**
 - Event Code: 195 (ASSAULT: Conduct suicide, car, or other non-military bombing)
Example of Automated Coding (from Schrodt, 2013)

BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- **First event:**
 - Event Code: 111 (DEMAND: Criticize or denounce)
 - Source: IRQ GOV
 - Target: TUR

- **Second event:**
 - Event Code: 195 (ASSAULT: Conduct suicide, car, or other non-military bombing)
 - Source: TUR
Example of Automated Coding (from Schrodt, 2013)

BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- **First event:**
 - Event Code: 111 (DEMAND: Criticize or denounce)
 - Source: IRQ GOV
 - Target: TUR

- **Second event:**
 - Event Code: 195 (ASSAULT: Conduct suicide, car, or other non-military bombing)
 - Source: TUR
 - Target: IRQKRD
Example of Automated Coding (from Schrodt, 2013)

BAGHDAD. Iraqi leaders criticized Turkey on Monday for bombing Kurdish militants in northern Iraq with airstrikes that they said had left at least one woman dead.

- **First event:**
 - Event Code: 111 (DEMAND: Criticize or denounce)
 - Source: IRQ GOV
 - Target: TUR

- **Second event:**
 - Event Code: 195 (ASSAULT: Conduct suicide, car, or other non-military bombing)
 - Source: TUR
 - Target: IRQKRD REB
Auxiliary data:

- Grids of 0.5 x 0.5 decimal degree resolution (from PRIOGRID). Approximately 55 x 55 kilometres at the equator. **10,409 cells**
Auxiliary data:

- Grids of 0.5×0.5 decimal degree resolution (from PRIORGRID). Approximately 55 x 55 kilometres at the equator. **10,409 cells**
 - Border and capital distance (PRIORGRID, 2000)
 - Travel time to nearest large city (20K, 50K) (Harvest Choice/IFPRI, 2000)
 - Share of mountains (UNEP, 2002), forests (Globcover, 2009), irrigated land (FAO, 2000)
 - Infant mortality rate (SEDAC, 2000)
 - Oilfields (PRIO, 2007), diamond fields (PRIO, 2005)
 - Primary roads, secondary roads (ADB/AICD, 2008)
 - Electricity transmission network (ADB/AICD, 2008)
 - Mines (U.S. Geology Survey, 2005)
Auxiliary data:

- Grids of 0.5 x 0.5 decimal degree resolution (from PRIOGRID). Approximately 55 x 55 kilometres at the equator. **10,409 cells**
 - Border and capital distance (PRIOGRID, 2000)
 - Travel time to nearest large city (20K, 50K) (Harvest Choice/IFPRI, 2000)
 - Share of mountains (UNEP, 2002), forests (Globcover, 2009), irrigated land (FAO, 2000)
 - Infant mortality rate (SEDAC, 2000)
 - Oilfields (PRIO, 2007), diamond fields (PRIO, 2005)
 - Primary roads, secondary roads (ADB/AICD, 2008)
 - Electricity transmission network (ADB/AICD, 2008)
 - Mines (U.S. Geology Survey, 2005)
 - Flashrate density (NASA, avg. 1995-2010)

- Years of drought and distance from closest cell undergoing drought (NOAA 2011, avg. 1946-2008)

- Temperature and Precipitation (NOAA 2011, avg. 1946-2008)

- Country GDP growth (from World Bank and PWT 8.0)
Auxiliary data:

- Grids of 0.5 x 0.5 decimal degree resolution (from PRIOGRID). Approximately 55 x 55 kilometres at the equator. \textbf{10,409 cells}

- Border and capital distance (PRIOGRID, 2000)
- Travel time to nearest large city (20K, 50K) (Harvest Choice/IFPRI, 2000)
- Share of mountains (UNEP, 2002), forests (Globcover, 2009), irrigated land (FAO, 2000)
- Infant mortality rate (SEDAC, 2000)
- Oilfields (PRIO, 2007), diamond fields (PRIO, 2005)
- Primary roads, secondary roads (ADB/AICD, 2008)
- Electricity transmission network (ADB/AICD, 2008)
- Mines (U.S. Geology Survey, 2005)
- Flashrate density (NASA, avg. 1995-2010)
- Temperature and Precipitation (NOAA 2011, avg. 1946-2008)
- Years of drought and distance from closest cell undergoing drought (NOAA 2011, avg. 1946-2008)
Auxiliary data:

- Grids of 0.5 x 0.5 decimal degree resolution (from PRIOGRID). Approximately 55 x 55 kilometres at the equator. **10,409 cells**
 - Border and capital distance (PRIOGRID, 2000)
 - Travel time to nearest large city (20K, 50K) (Harvest Choice/IFPRI, 2000)
 - Share of mountains (UNEP, 2002), forests (Globcover, 2009), irrigated land (FAO, 2000)
 - Infant mortality rate (SEDAC, 2000)
 - Oilfields (PRIO, 2007), diamond fields (PRIO, 2005)
 - Primary roads, secondary roads (ADB/AICD, 2008)
 - Electricity transmission network (ADB/AICD, 2008)
 - Mines (U.S. Geology Survey, 2005)
 - Flashrate density (NASA, avg. 1995-2010)
 - Temperature and Precipitation (NOAA 2011, avg. 1946-2008)
 - Years of drought and distance from closest cell undergoing drought (NOAA 2011, avg. 1946-2008)
 - Country GDP growth (from World Bank and PWT 8.0)