Défense de thèse de doctorat - Jérôme Fink
SynopsisLes méthodes deep learning sont devenues de plus en plus populaires pour construire des systèmes intelligents. Actuellement, de nombreuses architectures deep learning constituent l'état de l'art dans leurs domaines respectifs, tels que la reconnaissance d'images, la génération de texte, la reconnaissance vocale, etc. La disponibilité de bibliothèques et de frameworks matures pour développer de tels systèmes est également un facteur clé de ce succès.Ce travail explore l'utilisation de ces architectures pour construire des systèmes intelligents pour les langues des signes. La création grands corpus de données en langue des signes a rendu possible l'entraînement d'architectures deep learning à partir de zéro. Les contributions présentées dans ce travail couvrent tous les aspects du développement d'un système intelligent basé sur l'apprentissage profond. Une première contribution est la création d’une base de données pour la Langue des Signes de Belgique Francophone (LSFB). Celle-ci est dérivé d’un corpus existant et a été adapté aux besoins des méthodes deep learning. La possibilité de recourir à des méthodes de collecte participative (crowdsourcing) pour recueillir d'avantages de données est également explorée.La deuxième contribution est le développement ou l’adaptation d'architectures pour la reconnaissance automatique de la langue des signes. L'utilisation de méthodes contrastives pour apprendre de meilleures représentations est explorée, et la transférabilité de ces représentations à d'autres langues des signes est évaluée.Enfin, la dernière contribution est l’intégration des modèles dans des logiciels destinés au grand public. Cela a permis de mener une réflexion sur les défis lié à l'intégration d'un module intelligent dans le cycle de vie du développement logiciel.Membres du juryProf. Wim VANHOOF, Président, Université de NamurProf. Benoît FRENAY, Promoteur, Université de NamurProf. Anthony CLEVE, Co-promoteur, Université de NamurProf. Laurence MEURANT, Membre interne, Université de NamurProf. Lorenzo BARALDI, Membre externe, Université de ModèneProf. Annelies BRAFFORT, Membre externe, Université de Paris-SaclayProf. Joni DAMBRE, Membre externe, Université de GandVous êtes cordialement invités à un drink, qui suivra la soutenance publique. Pour une bonne organisation, merci de donner votre réponse pour le vendredi 6 juin.
Je m'inscris
Voir le contenu
Défense de thèse de doctorat - Antoine Sion
SynopsisOver recent years, the development of agent-based models has allowed researchers to advance their understanding of naturally occurring collective behaviours. Swarm robotics, a field studying the design of decentralised robot swarms, has emerged following the replication of some collective behaviours in artificial groups of robots. The first part of this thesis provides novel techniques for the aggregation of heterogeneous swarms. First, we enhance an existing controller for an aggregation problem on two sites through the use of informed robots. We show that our simplified approach offers a wider range of operating conditions and a greater flexibility. Second, we provide a new method for the aggregation of robot swarms with adaptive random walks. We separately study cue-based aggregation with a swarm of robots only sensing private information and neighbour-based aggregation with a swarm of robots sensing social information. We show that a trade-off can be obtained with a heterogeneous swarm composed of the two robot types, forming a dense cluster near the minimum of an environmental cue. Private and social information also play a key role in the evolution of biological processes inside animal groups. Dispersal, the movement of an animal from site of birth to site of reproduction, is strongly affected by the acquisition and the use of information. Since experimental research is often difficult to conduct while accounting for multiple information sources and environmental variability, the use of agent-based models offer an opportunity to study the evolution of dispersal and its associated costs linked to private and social information in a controlled setting. The second part of this thesis provides an agent-based model of dispersal including the acquisition of information and its associated costs. Throughout three case studies, we observe the evolution of genes linked to the acquisition of information and the obtained dispersal strategies in different scenarios.
Jury members
Prof. Wim Vanhoof, Président, Université de Namur, BelgiqueProf. Elio Tuci, Secrétaire, Université de Namur, BelgiqueProf. Timoteo Carletti, Membre interne, Université de Namur, Belgique Prof. Eliseo Ferrante, Membre externe, Vrije Universiteit Amsterdam, Pays-BasProf. Mauro Birattari, Membre externe, ULB, Belgique Prof. Andreagiovanni Reina, Membre externe, Universität Konstanz, Allemagne
La défense sera suivie d'un drink.
Je m'inscris
Voir le contenu
Inscription à la défense de thèse d'Antoine Sion
Formulaire d'inscription
Nom
Prénom
Adresse e-mail
Assistera à la réception qui suivra la défense
Oui
( optionnel )
Non
( optionnel )
Désire une vignette de parking
Oui
( optionnel )
Non
( optionnel )
Souhaite un certificat pour l'assistance à la défense
Oui
( optionnel )
Non
( optionnel )
Pour le traitement de votre demande, les données sans mention « optional » doivent obligatoirement être complétées. Lorsque vous soumettez ce formulaire, les données complétées sont transmises à l’UNamur et utilisées pour donner suite à votre demande. Pour en savoir plus sur la protection de vos données et sur vos droits
Voir le contenu
Le Département de physique reçoit une délégation du CERN
En mai 2025, le Département de physique recevait des visiteurs particuliers : deux namurois, Serge Mathot et François Briard, alumni de l’UNamur et membres du CERN. Plusieurs activités étaient au programme, allant de la visite de l’accélérateur à particules, en passant par la vulgarisation scientifique et les séminaires thématiques notamment en sciences du patrimoine. Objectif ? Identifier les domaines ou activités dans lesquels l’UNamur et le CERN pourraient renforcer leur collaboration.
Voir le contenu