Approche fonctionnelle des systèmes dynamiques
- Code de l'UE SMATM122
-
Horaire
30 30Quadri 2
- Crédits ECTS 6
- Langue
- Professeur
Ce cours vise principalement à faire acquérir à l'étudiant les concepts et résultats principaux, ainsi que les méthodes, de la théorie des systèmes dynamiques en dimension infinie (systèmes à paramètres répartis). Les différents aspects de l'étude de tels systèmes (modélisation, analyse, conception de lois de contrôle stabilisantes, simulation) sont abordés dans le cours magistral, dans des séances de travaux dirigés et des travaux personnels.
Etude d'équations différentielles linéaires où la variable d'état évolue dans un espace de Banach ou de Hilbert de dimension infinie. Généralisation du concept d'exponentielle matricielle exp(At) à celui de semi-groupe de la même forme engendré par un générateur linéaire A, fermé et densément défini. Problèmes de Cauchy homogène et commandé. Etude de la stabilité, de la contrôlabilité et de l'observabilité de tels systèmes. Conception de lois de contrôle stabilisantes (régulateur PI, commande Linéaire-Quadratique (LQ) optimale, ...). Applications aux équations aux dérivées partielles (EDP), telles que l'équation de la chaleur, de la corde vibrante ou de réaction-convection-diffusion. Application à la modélisation d'équations différentielles ordinaires non linéaires par l'opérateur de Koopman.
Cours magistral, travaux dirigés et travaux personnels.
Séminaires, rapport écrit et présentation orale d'un projet (étude de cas).
Curtain R. and Zwart H., Introduction to Infinite-Dimensional Systems Theory: A State-Space Approach, volume 71 of Texts in Applied Mathematics book series, Springer New York, United States, 2020.
Jacob B. and Zwart H., Linear port-Hamiltonian systems on infinite-dimensional spaces, Birkhäuser, Basel, 2012.
Lasota, A., & Mackey, M. C., Chaos, fractals, and noise: stochastic aspects of dynamics (Vol. 97). Springer Science & Business Media, 2013.
Bátkai, András, M. Kramar Fijavž, and Abdelaziz Rhandi. Positive operator semigroups. Birkhauser Verlag Ag, 2017.
Mauroy A., Mezic I. and Susuki Y., The Koopman Operator in Systems and Control, Springer, 2020.
Formation | Programme d’études | Bloc | Crédits | Obligatoire |
---|---|---|---|---|
Master 60 en sciences mathématiques | Standard | 0 | 6 | |
Master 120 en sciences mathématiques, à finalité approfondie | Standard | 0 | 6 | |
Master 120 en sciences mathématiques, à finalité spécialisée en Project Engineering | Standard | 0 | 6 | |
Master 120 en sciences mathématiques, à finalité spécialisée en data science | Standard | 0 | 6 | |
Master 120 en sciences mathématiques, à finalité didactique | Standard | 0 | 6 | |
Master 120 en sciences mathématiques, à finalité approfondie | Standard | 1 | 6 | |
Master 120 en sciences mathématiques, à finalité spécialisée en Project Engineering | Standard | 1 | 6 | |
Master 120 en sciences mathématiques, à finalité spécialisée en data science | Standard | 1 | 6 | |
Master 120 en sciences mathématiques, à finalité didactique | Standard | 1 | 6 | |
Master 60 en sciences mathématiques | Standard | 1 | 6 |