Acquis d'apprentissage

Le cours présentera quelques résultats et outils récents dans le domaine de la recherche des systèmes dynamiques, une attention particulière sera portée à la dualité « chaos » (irrégulier) périodique (régulier). Plusieurs modèles seront discutés et analysés, parmi lesquels l'application logistique qui sera utilisée pour introduire et développer de nouveaux concepts. Les étudiants seront également en contact avec la théorie des fractales : leur rôle et liens avec les systèmes dynamiques.

Contenu

Nous suivrons de près le livre "Nonlinear Dynamics And Chaos" de Steven Strogatz. Les sujets suivants seront analysés.

1. Introduction : au delà des orbites régulières. 2. L'application logistique : orbites, points fixes et points périodiques. 3. Stabilité des points fixes et diagramme de bifurcation. 4. Dépendance par rapport aux données initiales: exemple et définition. 5. Orbites chaotiques et "mappings wiggly". 6. Conjugaison de mappings et propriétés topologiques. 7. L'application tente et l'ensemble fractal de Cantor triadique. 8. Fractales comme points fixes de systèmes dynamiques : Iterated Functions Systems. 9. Dimensions fractales. 10. Systèmes d'équations différentielles dans le plan : existence de solutions périodiques, le théorème de Poincaré-Bendixon. 11. Conditions de non existence de solutions périodiques. 12. Théorèmes d'existence et unicité de cycles limites : le Théorème de Dragiliev, le Théorème de Massera 13. Stabilité des solutions périodiques et Théorème de Lyapounov-Andronov-Witte

Exercices

Les exercices illustrent les concepts vus au cours. Ils se donnent principalement sur ordinateur et les thèmes abordés sont susceptibles de varier : intégration numérique d'équations différentielles (rappel), point stationnaires, stabilité, mappings, diagrammes de bifurcation, fractales, ensembles de Mandelbrot, dimension fractale, cycles limites, conjugaison.

Méthodes d'enseignement

Les étudiants seront invités à assister aux cours en ligne du professeur Steven Strogatz ; puis une discussion sera organisée en classe

Méthode d'évaluation

épreuve écrite : 3 h d'exercices

Sources, références et supports éventuels

K.T. Alligood, T.D. Sauer et J.A. Yorke, Chaos. An introduction to dynamical systems, Springer-Verlag, New York (1996). Cambridge Univ. press (2003). J. Banks, V. Dragan et A. Jones, Chaos, a mathematical introduction, Australian mathematical society Lecture Series 18, Cambridge Univ. press (2003). M. Barnsley, Fractals everywhere, Academic Press London (1988) G.A. Edgar, Measure, Topology and fractal geometry, UTM, Springer-Verlag, New York (1990). H.O. Peitgen, H. J¿urgens et D. Saupe, Chaos and fractals, new frontiers of science, Springer-Verlag, New York (1993) C. Tricot, Courbes et dimension fractale, Springer Berlin (1999). S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, Westview Press V. Arnol'd: Equations différentielles ordinaires L. Pontriaguine: Equations différentielles ordinaires G. Sansone et R. Conti: Non-linear differential equations Z. Zhang: Qualitative theory of differential equations

Langue d'instruction