This article is taken from the "Impact" section of the December 2024 issue of Omalius magazine.

On the night of January 31, 1953, the North Sea suddenly rose by almost four meters, submerging parts of the Netherlands and Belgium. The disaster caused the death of over 2,500 people, as well as considerable damage. According to Anna Kiriliouk, lecturer in statistics at UNamur's Department of Mathematics and EMCP Faculty, this exceptional event truly marked "the beginning of the development of extreme value theory, with the development of the first extreme value construction project"

The Delta Plan, as it is called, is a system of dikes that protects the Netherlands against the risk of flooding, with these dikes overtopping once every 10,000 years. A rare danger, certainly, but not zero, which "could not have been calculated using conventional statistics, which are very poorly adapted to rare events", believes the mathematician.

While climate change is often discussed in terms of averages, such as rising temperatures and sea levels, it also has the consequence of increasing the frequency of extreme weather events, with significant repercussions for our societies. "In other words, the risk increases along with the concentration of greenhouse gases (GHGs) in the atmosphere", summarizes the researcher. "Thus, a flood calculated in 1953 to occur only every 10,000 years does not have the same significance as today. The latter could happen more frequently, for example every 1,000 years."

Attributing extreme events

While extreme weather events are on the increase, it's difficult in practice to attribute any particular flood or drought to climate change. With this in mind, Anna Kiriliouk has just been awarded an interdisciplinary research project,named EXALT, in collaboration with UCLouvain. "It involves both climatologists and statisticians, she reveals.

Image
Photo d'Anna Kiriliouk

"This collaboration is very important, because answering this question of the attribution of extreme events can only be done through the development of a common language between our two disciplines, which currently operate separately. We have a lot to learn from each other"

Anna Kiriliouk Lecturer in Statistics, Department of Mathematics and EMCP Faculty, UNamur

In practice, the EXALT project will therefore calculate the probabilities of an extreme event occurring, and compare this probability with that of the same situation in a world where GHG emissions would not have increased. "Of course, we don't have real data from such a world", says Anna Kiriliouk. "We are therefore basing ourselves on alternative climate simulations, the quality of which we will moreover compare, with a focus on extreme events."

Divided into three working groups, the EXALT project will seek in particular to determine the role of climate change in the occurrence of floods, as well as heat waves and drought in Europe. And to do so as realistically as possible: "One of the things we want to incorporate into climate models concerns the dependency between data," explains Anna Kiriliouk. "For example, if a heat wave hits Namur, there's a good chance that the same temperatures will affect Louvain-La-Neuve. We therefore say that there is a strong spatial dependency between these two data. However, this dependence is probably not at all valid for rain, which is much more heterogeneous. By taking into account all these variables, both spatial and temporal, we hope to improve existing models."

A third working group will study much more distant areas, located in Antarctica. "Until 2016, the extent of the Antarctic ice pack was increasing, before abruptly decreasing", the researcher illuminates. "Or, according to the models, this event was considered almost impossible. But with one of EXALT's partners, we began to analyze the evolution of pack ice extent using extreme value theory. With the latter, this sudden drop was no longer so improbable. This gave us confidence in our approach, which is all the more important when the state of the pack ice has such a strong influence on other climate variables."

Compound events

This interaction between several climatic processes is, moreover, the subject of a second project just obtained by Anna Kiriliouk and funded by an FNRS Mandat d'Impulsion Scientifique. "The aim is to make it possible to study what we call compound events", explains the researcher. "During extreme climatic situations, we usually associate very high or low values simultaneously, such as a lack of rain and high temperature, resulting in an intense drought. But in the case of compound phenomena, we find that the combination of several variables, albeit in a moderate state, results in a severe and unusual event."

In 2017, for example, Hurricane Sandy, which struck the US coastline, is considered a compound event. While North Atlantic hurricanes usually dissipate in mid-ocean, this one coincided with onshore winds and a high tide, leading to massive flooding of New York and the surrounding area.

"In this project, we will therefore try to include more flexibility between the different variables, by introducing different degrees of dependence, the mathematician elaborates. "We're also going to try, as a second step, to group the dependencies together, in order to lighten the models, which become more and more complex as we add nuances to them. And once these models have been modified, we'll apply them to recent events to test their realism."

EXALT - ARC project (FWB)

Funded by the Wallonia-Brussels Federation (FWB), ARC projects are Concerted Research Action projects that aim to develop university or inter-university centers of excellence in basic research areas and, where possible, that carry out basic and applied research in an integrated way and aim to add economic and social value to research results.

Logo FWB

Mandat d'impulsion scientifique (MIS) - FNRS

The aim of the funding granted is to support young permanent researchers wishing to develop a scientific unit within their academic institution in a promising field. This mandate has earned Anna Kiriliouk a fellowship from Namur Research College (NARC).

Logo FNRS

This article is taken from the "Impact" section of Omalius magazine #35 (December 2024).

Visuel de Omalius #35 - décembre 2024